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Direct numerical simulations (DNS) are conducted of a model hydrocarbon–nitrogen
mixing layer under supercritical conditions. The temporally developing mixing layer
configuration is studied using heptane and nitrogen supercritical fluid streams at a
pressure of 60 atm as a model system related to practical hydrocarbon-fuel/air systems.
An entirely self-consistent cubic Peng–Robinson equation of state is used to describe
all thermodynamic mixture variables, including the pressure, internal energy, enthalpy,
heat capacity, and speed of sound along with additional terms associated with the
generalized heat and mass transport vectors. The Peng–Robinson formulation is based
on pure-species reference states accurate to better than 1% relative error through
comparisons with highly accurate state equations over the range of variables used in
this study (600 6 T 6 1100 K, 40 6 p 6 80 atm) and is augmented by an accurate
curve fit to the internal energy so as not to require iterative solutions. The DNS results
of two-dimensional and three-dimensional layers elucidate the unique thermodynamic
and mixing features associated with supercritical conditions. Departures from the
perfect gas and ideal mixture conditions are quantified by the compression factor and
by the mass diffusion factor, both of which show reductions from the unity value. It
is found that the qualitative aspects of the mixing layer may be different according to
the specification of the thermal diffusion factors whose value is generally unknown,
and the reason for this difference is identified by examining the second-order statistics:
the constant Bearman–Kirkwood (BK) thermal diffusion factor excites fluctuations
that the constant Irwing–Kirkwood (IK) one does not, and thus enhances overall
mixing. Combined with the effect of the mass diffusion factor, constant positive large
BK thermal diffusion factors retard diffusional mixing, whereas constant moderate IK
factors tend to promote diffusional mixing. Constant positive BK thermal diffusion
factors also tend to maintain density gradients, with resulting greater shear and
vorticity. These conclusions about IK and BK thermal diffusion factors are species-
pair dependent, and therefore are not necessarily universal. Increasing the temperature
of the lower stream to approach that of the higher stream results in increased layer
growth as measured by the momentum thickness. The three-dimensional mixing layer
exhibits slow formation of turbulent small scales, and transition to turbulence does not
occur even for a relatively long non-dimensional time when compared to a previous,
atmospheric conditions study. The primary reason for this delay is the initial density
stratification of the flow, while the formation of strong density gradient regions both
in the braid and between-the-braid planes may constitute a secondary reason for the
hindering of transition through damping of emerging turbulent eddies.
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1. Introduction
Mixing layers naturally occur when two fluids move with a relative parallel velocity,

but the characteristics of these layers also depend upon other parameters such as the
density ratio (Dimotakis 1986) and the particular form of the perturbations or lack
of perturbations present in the flow (Cortesi, Yadigaroglu & Banerjee 1998; Cortesi
et al. 1999). Numerous theoretical studies exist of gaseous mixing layers at standard
(atmospheric) pressure and temperature conditions (Gerz, Schumann & Elghobashi
1989; Cortesi et al. 1998, 1999, etc.), these being the conditions prevailing in most
experiments that theoretical investigations seek to emulate. However, there is an
entire class of mixing layers that has received much less attention owing to the lack
of guiding theoretical and/or experimental studies: supercritical mixing layers. Such
mixing layers occur in nature in planetary atmospheres (e.g. Jupiter), and in machines
such as combustion engines (diesel and gas turbine) where the fuel is introduced in
a jet-like manner in a high pressure and temperature environment. This last example
is essentially different from the process of atomization wherein the fluid in the jet is
liquid and the shear layer evolving at its surface creates a rollup (Kelvin–Helmholtz
instability) and eventual breakup of the jet into small, irregularly shaped entities
(ligaments) and drops. When the jet is introduced into an environment at a pressure,
p, or temperature, T , higher than that of the critical point of the substance, the fluid
is no longer a liquid (Hirshfelder, Curtis & Bird 1964; Prausnitz, Lichtenthaler & de
Azevedo 1986) and does not behave according to the well-established atmospheric
observations (Mayer et al. 1996, 1998 and Chehroudi, Talley & Coy 1999). For
example, as the pressure of the environment is raised, the jet not only changes its
appearance to increasingly resemble that of a gaseous jet, but more importantly there
is no evidence of drop formation as shown by Cheroudi et al. (1999). Instead, thread-
or finger-like entities emerge from the jet, which rapidly dissolve away from the jet
core (Chehroudi et al. 1999). With increasing pressure, the observations also show a
decrease in the length and the thickness of the internal core. These observations have
direct relevance to hydrocarbon injection in diesel and gas turbine engines because
the critical pressure of most fuel hydrocarbons is in the range of 1.5–3 MPa and the
maximum pressure attained in these engines is about 6 MPa. Therefore, because the
critical point of a mixture depends on its composition, it is clear that the fuel may be
subjected to both subcritical and supercritical conditions.

Fluid breakup under supercritical conditions has only been studied empirically
(Mayer et al. 1996, 1998 and Chehroudi et al. 1999), and there is almost no information
on the detailed physical processes governing it. The theoretical study of Oefelein &
Yang (1996), although not specifically addressing fluid breakup under supercritical
conditions, represents a unique exception to the lack of turbulent supercritical flow
simulations. In that study Oefelein & Yang (1996) investigate transcritical sprays
using large eddy simulations by employing a Smagorinsky model with a constant
whose value is derived from single-phase-flow compressible turbulence investigations.
It is not clear how this value of the Smagorinsky constant applies to the situation
studied by Oefelein & Yang (1996), and how it is consistent with their considerations
of drag forces on the drops (i.e. either there is a two-phase flow where drag is a
valid concept, but the Smagorinsky constant may be incorrect; or there is a single-
phase flow with the Smagorinsky constant being relevant, but then drag is no longer a
relevant concept). Moreover, Oefelein & Yang (1996) neglect Soret and Dufour effects
without providing an estimate of the validity of this assumption. The present study
constitutes a first step towards bridging the knowledge gap between the needed and
existing information regarding Soret and Dufour effects in the context of supercritical
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mixing layers. Since accurate, detailed information on Soret and Dufour coefficients
in high-pressure flows is lacking, in this paper we perform a parametric study by using
a set of constant thermal diffusion factor values. We address in this investigation the
detailed processes that may lead to the formation of small scales in the shear layer of
a fluid jet through direct numerical simulation (DNS) of a mixing layer. (Although
mixing layers are different from jets, the jet mixing region behaves essentially as
a mixing layer.) Because for varying (p, T ) the critical locus for a mixture of N
substances is usually a complicated N − 1 manifold, the ‘supercritical’ terminology
throughout this paper which discusses hydrocarbon–nitrogen mixing refers to the
conditions with respect to the pure hydrocarbon.

Since there are common aspects to fluid jets and mixing layers, investigations of
density-stratified mixing layers are pertinent to the study of supercritical fluid jet
disintegration. An isolated study of density stratification effects in spatially evolving
high-pressure mixing layers is that of Brown & Roshko (1974). Using a pressurized
(up to 10 atm) experimental facility the authors compared the spreading angle from
a nitrogen–air mixing layer at 7 atm where the density ratio was considered to be
close to unity, to that of a nitrogen–helium flow in 4 atm where the density ratio was
changed by switching the location of nitrogen from top to bottom. The stratification
effects on the development of the mixing layer were only modest: a large (factor of
7) increase in ρ2/ρ1 (the subscripts 1 and 2 refer to the upper and lower streams,
respectively) resulted only in a factor of 2 decrease in the spreading angle.

This paper is organized as follows: The conservation equations are presented
in § 2 where we also include the specifics of the equation of state and transport
coefficients. These conservation equations are based upon those previously presented
for a multicomponent mixture by Harstad & Bellan (1998), and validated for a
heptane fluid drop in nitrogen by Harstad & Bellan (2000). As discussed by Harstad
& Bellan (1998) and Harstad & Bellan (2000), the most general formulation for the
diffusional heat and mass fluxes is that of fluctuation-dissipation theory formulated
by Keizer (1987). This theory is not only entirely consistent with non-equilibrium
thermodynamics, but also allows the definition of the relationships between fluxes and
forces for a general fluid which continuum theory does not give; it is customary within
the continuum formulation to extend kinetic theory of rarified gases to describe more
general cases as in Chapman & Cowling (1970). In § 3 we describe the configuration,
the initial conditions, and briefly mention the numerical approach, which has been
discussed in detail elsewhere (Miller & Bellan 1999). Section 4 is devoted to the
discussion of results, emphasizing the peculiarities introduced by the high-pressure
thermodynamics; particular attention is given to the influence of the thermal diffusion
factors (Chapman & Cowling 1970) which are the additional transport coefficients
associated with Soret and Dufour effects that may become important at high pressure.
Following the validated fluid model, two definitions of the thermal diffusion factor
appear in the formulation, each being related to a mathematical form of the heat
flux vector. While only one of these definitions converges to the kinetic theory
value in the low-pressure limit, both of these forms of the thermal diffusion factor
could be measured in appropriate experiments; however, such data are generally
lacking. Therefore, although an approximate pressure and temperature variation of the
thermal diffusion factor has been identified for heptane–nitrogen during the previously
conducted model validation, the effect of the identity and of the imposed constant
value of the thermal diffusion factor is first investigated by studying two-dimensional
mixing layers. Using the knowledge of the thermal diffusion factor obtained from the
validated model of Harstad & Bellan (2000), a single three-dimensional simulation is
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performed and its results are discussed. In particular, the relevance of specific visual
features exhibited by visualizations of the simulations to the evolution of turbulence
scales is highlighted. Conclusions are presented in § 5 along with further discussion
regarding knowledge needs related to the values of the thermal diffusion factors.

2. Mathematical formulation
The compressible form of the conservation equations for a binary mixture of general

(Newtonian) fluids are

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xj
[ρuiuj + pδij − τij] = 0, (2.2)

∂

∂t
(ρet) +

∂

∂xj
[(ρet + p)uj − uiτij + qIK,j] = 0, (2.3)

∂

∂t
(ρYh) +

∂

∂xj
[ρYh uj + Jhj] = 0, (2.4)

where ρ is the density, ui is the velocity, et = e+ uiui/2 is the total energy (i.e. internal
energy, e, plus kinetic energy), p is the thermodynamic pressure (the temperature is T )
and Yh is the mass fraction of heptane (the mass fraction of nitrogen is Yn = 1− Yh).
Furthermore, qIK is the Irwing–Kirkwood (subscript IK) form of the heat flux vector
(see Sarman & Evans 1992 and discussion below), J h is the heptane mass flux vector
and τij is the Newtonian viscous stress tensor:

τij = µ

[
∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij

]
, (2.5)

where δij is the Kronecker delta function, and µ is the mixture viscosity which is in
general a function of the thermodynamic state variables. For an isotropic fluid, τij
usually contains terms proportional to both shear and bulk viscosity; however, the
Keizer (1987) fluctuation-dissipation theory (see details below) clearly distinguishes
between these two contributions: whereas shear viscosity arises from molecular inter-
actions transferring momentum between neighbouring fluid elements, bulk viscosity
is related to changes, or different states, of internal energy. Since bulk viscosity ef-
fects generally tend to be small (see Bird, Stewart & Lightfoot 1960), here they are
neglected; the value of the bulk viscosity is uncertain or unknown even under the
best circumstances.

The governing equations for the mixing layer comprise (2.1)–(2.5) and the equation
of state whose form is discussed in § 2.1. To solve the system of governing equations
one must specify the mathematical forms of qIK and J h as functions of the dependent
variables and of the transport coefficients, and give boundary and initial conditions for
the mixing layer; these are presented in §§ 2.2, 2.3 and 3, respectively. The calculation
of the transport coefficients other than the thermal diffusion factors (see below) is
discussed in § 2.4.

2.1. Equation of state

It is well known that the perfect gas relationship is a good representation of the
equation of state (EOS) only at standard conditions (Prausnitz et al. 1986); as the
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pressure and temperature increase, departures from the perfect gas behaviour occur
whose severity depends upon the species. Thermodynamics mitigates this situation
through the microscopic corresponding states theory (Prausnitz et al. 1986) whose
main result is the fact that the EOS is a universal function relating the appropriately
non-dimensionalized (using molecular parameters) pressure, temperature and molar
volume. Traditional EOSs such as the Redlich–Kwong, the Soave–Redlich–Kwong and
the Peng–Robinson (PR) discussed by Prausnitz et al. (1986) have indeed been shown
to be good representations of fluid behaviour at large values of the ‘reduced’ conditions
(subscript r) defined by pr = p/pc and Tr = T/Tc where the subscript c denotes the
critical thermodynamic state. More recently, Harstad, Miller & Bellan (1997) have
presented computationally efficient forms of EOSs and have also shown that it is
possible to extend their validity beyond the range of data by using thermodynamic
departure functions. The usefulness of all these EOSs extends to multicomponent
mixtures since ‘mixing rules’ (see Prausnitz et al. 1986) allow in fact the calculation
of the EOS coefficients for a wide range of species combinations.

In this study we choose to represent the binary mixture by the PR EOS because it
is computationally one of the simplest, and because the pure-species reference states
were found to be accurate to better than 1% relative error through comparisons with
the accurate state equations of Harstad et al. (1997) over the range of variables used
in this study. The cubic PR EOS is

p = RuT/(v − Bm)− Am/(v2 + 2vBm − B2
m), (2.6)

and the two (mixture) parameters specifying the equation are

Am =
∑
α

∑
β

XαXβAαβ, Bm =
∑
α

XαBα. (2.7)

In the above equations, the subscripts α and β denote the individual species and
take values of n and h (no summation over Greek indices), the summations indicate
summing over both species, Ru is the universal gas constant, the mole fraction X is
related to the mass fraction by mαXα = mYα where mα is the molecular weight of
pure species α and the mixture molecular weight is m = Xnmn + Xhmh. Furthermore,
the molar volume v is related to the density by v = m/ρ. The components of the
PR parameters are provided by an appropriate set of mixing rules which vary for
different state equations and may even have variations for the same state equation;
in the present model we follow the mixing rules given in Harstad et al. (1997), and
the exact set of mixing rules is provided in Appendix A. These mixing rules are a
synthesis of those in Reid, Prausnitz & Polling (1987) and Prausnitz et al. (1986).

To ensure self-consistency in the model, all of the thermodynamic properties of
the flow are here calculated from the same equation of state. The properties of
interest for the present fluid dynamics simulations are the molar enthalpy (h), the
constant-pressure molar heat capacity (Cp) and the speed of sound (as). Each of these
properties can be obtained through various derivatives and functions of the Gibbs
energy (G):

G(T , p, Xα) =

∫ vu

v

p(v′, T , Xα) dv′ + pv − RuT +
∑
α

Xα[G
0
α + RuT ln (Xα)], (2.8)

where the superscript 0 represents the ‘low-pressure’ reference condition for the inte-
gration as generally used in the departure function formalism described by Prausnitz
et al. (1986), and vu is given below. Note that the integral is ill defined for a zero-
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pressure reference condition; hereinafter we choose p0 = 1 bar such that vu = RuT/p
0.

From this relation we then obtain

h = G− T
(
∂G

∂T

)
p,X

= h0 + pv − RuT +K1

(
Am − T ∂Am

∂T

)
, (2.9)

Cp =

(
∂h

∂T

)
p,X

= C0
p − T

(∂p/∂T )2
v,X

(∂p/∂v)T ,X
− Ru − T ∂

2Am

∂T 2
K1, (2.10)

where the partial derivatives of Am are given in Appendix B, h is the molar enthalpy,
h0 is the reference molar enthalpy, Cp is the molar heat capacity, C0

p = ∂h0/∂T is the
reference molar heat capacity,(

∂p

∂T

)
v,X

= Ru/(v − Bm)− (∂Am/∂T )/(v2 + 2vBm − B2
m), (2.11)

(
∂p

∂v

)
T ,X

=
−RuT

(v − Bm)2

1− 2Am

{
RuT (v + Bm)

(
v

v − Bm +
Bm

v + Bm

)2
}−1

 ,
(2.12)

K1 =
1

2
√

2Bm
ln

[
v + (1−√2)Bm

v + (1 +
√

2)Bm

]
. (2.13)

Finally, for real fluids the speed of sound

as =

√
1

ρκs
, (2.14)

is given in terms of the isentropic compressibility

κs = κT − vTα2
v/Cp, (2.15)

which is related to the expansivity (αv) and the isothermal compressibility (κT ), which
can be expressed by:

αv = − (∂p/∂T )v,X
v(∂p/∂v)T ,X

, κT =
−1

v(∂p/∂v)T ,X
. (2.16)

These equations specify the entire thermodynamics of the binary mixture.

2.2. Heat and mass transport

Although similar equations, as published by others, have been derived in textbooks,
the originality of the Harstad & Bellan (2000) derivation is to distinguish between
thermal diffusion factors associated with different forms of the heat flux (see below),
and define the thermal conductivity from the transport matrix (see below) in terms
of these thermal diffusion factors. The distinction between the two thermal diffusion
factors was not incidental; in fact, it was crucial in enabling validation of the model
with microgravity data. The model presented here is based upon that of Harstad &
Bellan (2000).

Within this general theory, the diffusional fluxes are linear combinations of terms
proportional to the gradients of the temperature, of the molar fractions and of the
pressure, and the proportionality constants are the elements of the ‘transport matrix’.
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One property of the transport matrix is that its elements are symmetric as they satisfy
the Onsager reciprocal relationships. According to Harstad & Bellan (1998, 2000),
the form of the diffusional fluxes is

qIK,j = −
[
λ′IK

∂T

∂xj
+ αIKRuT

(
m

mnmh

)
J ′hj

]
, (2.17)

Jhj = −
[
J ′hj + αBKYnYh ρD/T

∂T

∂xj

]
, (2.18)

J ′hj = ρD

[
αD
∂Yh

∂xj
+
YnYh

RuT

(
mnmh

m

)(
v,h

mh
− v,n

mn

)
∂p

∂xj

]
, (2.19)

where (2.17) is the Irwing–Kirkwood form of the heat flux (Sarman & Evans 1992),
the binary diffusion coefficient is D, the mass diffusion factor is αD , and the thermal
conductivity λ′IK is defined by Harstad & Bellan (2000) from the transport matrix.
It can be shown that λ′IK does not correspond to the kinetic theory (subscript KT )
definition of the thermal conductivity in that limp→0 λ

′
IK 6= λKT but it is related to the

thermal conductivity, λ, through

λ′IK = λ+XnXh αIK αBKRuρD/m, (2.20)

where limp→0 λ = λKT as discussed in Harstad & Bellan (2000). In the above equations
αIK and αBK are the thermal diffusion factors corresponding to the IK and the
Bearman–Kirkwood (subscript BK) forms of the heat flux (Sarman & Evans 1992),
respectively; they are the new transport coefficients that are introduced by the Soret
(in the molar fluxes) and the Dufour (in the heat flux) terms of the transport matrix,
and are characteristic of the particular species pairs under consideration. Properties
of these thermal diffusion factors are that limp→0 αIK 6= αKT and limp→0 αBK = αKT .
Currently there is no information as to the functional form of αIK and αBK with
respect to the primary variables (p, T , Yi) and/or their magnitudes, but it can be
shown that they are related through a relationship derived in Harstad & Bellan
(2000)

αIK = αBK +
1

RuT

(
mnmh

m

)(
h,h

mh
− h,n

mn

)
. (2.21)

We discuss in the Results section, § 4, the effect of the identity (IK or BK) and the
magnitude of these thermal diffusion coefficients.

Thermodynamic related quantities appearing in (2.19) and (2.21) are the partial
molar volumes v,α = ∂v/∂Xα and the partial molar enthalpies h,α = ∂h/∂Xα:

v,α =
−1

(∂p/∂v)T ,X

[
RuT

v − Bm +
RuTBα

(v − Bm)2
+

2Am(v − Bm)Bα
(v2 + 2vBm − B2

m)2
− 2

∑
β AαβXβ

v2 + 2vBm − B2
m

]
,

(2.22)

h,α = h0
α + pv,α − RuT +

(
Am − T ∂Am

∂T

)
v,α − vBα/Bm
v2 + 2vBm − B2

m

+K1

[
∂Am

∂Xα

− T ∂2Am

∂Xα∂T
−
(
Am − T ∂Am

∂T

)
Bα

Bm

]
, (2.23)

where v = Xnv,n +Xhv,h and h = Xnh,n +Xhh,h. The mass diffusion factor αD is also a
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m,
kg

kg mole
vc,

m3

kg moleSpecies Tc, K pc, atm Zc Ω

Nitrogen 28.013 126.26 33.55 0.0898 0.290 0.039
Heptane 100.205 540.3 27.04 0.432 0.263 0.349

Table 1. Pure-species properties.

thermodynamic function which is calculated from the fugacity coefficients, ϕα (which
are related to the Gibbs energy), as follows:

αD = 1 +Xα

∂ ln (ϕα)

∂Xα

. (2.24)

Note that αD is independent of which species is chosen in the evaluation. After
significant manipulation we obtain the explicit relationship

αD = 1 +XnXh

{
RuT

(∂p/∂v)T ,X

(
1

B2
m

)

×
[
Bh − Bn
v − Bm +

Bn∂Am/∂Xh − Bh∂Am/∂Xn

RuT (v2 + 2vBm − B2
m)

]2

+K2

}
, (2.25)

where

K2 =

(
Bh − Bn
Bm

)2

+
2

RuT

(
K1

B2
m

)
(AhhB

2
n + AnnB

2
h − 2AnhBnBh). (2.26)

The formulation is now closed with the exception of specifying the transport coeffi-
cients µ, λ, D and αIK (or αBK) and also the molar reference enthalpy of the mixture, h0.

2.3. Transport coefficients and reference enthalpy

In the context of DNS it is futile to attempt the use of exact values of the transport
coefficients along with their thermodynamic dependences since it would be impossible
to resolve the length scales associated with the resulting Reynolds numbers. To focus
our discussion on transport coefficients, we now devote attention to the properties
of both heptane and nitrogen which are shown in table 1. Even in the case of
an arbitrarily small physical domain, the Schmidt number for the liquid-like fluid
heptane is too large to resolve the species fields for interesting Reynolds numbers. We
therefore limit the range of thermodynamic state space which will be considered to the
range 600 6 T 6 1100 K, 40 6 p 6 80 atm, and of course 0 6 Yh 6 1. This particular
region is chosen for two primary reasons: (1) The PR EOS was found to be highly
accurate within this region when compared to the more accurate model of Harstad
et al. (1997) with the relative error being in no case greater than approximately 1%
for both the entropy and enthalpy predictions (this error can be larger than 25% at
p = 6 MPa and T = 350 K). (2) Contour plots (not shown) of the viscosity, and of the
Schmidt (Sc) and Prandtl (Pr) numbers based on accurate species transport properties
calculated as in Harstad & Bellan (1998), revealed that the viscosity is predominantly
a function of T alone, whereas Sc and Pr are predominantly functions of the mass
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fraction. This leads to the relatively simplified diffusion coefficients

µ = µR

(
T

(T1 + T2)/2

)0.7

, T in K, (2.27)

Sc =
µ

ραDD
= 1.5− Yh, P r =

µCp/m

λ
=

Sc

2 exp (−3Yh/2)
, (2.28)

where µR is a reference viscosity and the reference temperatures T1 and T2 correspond
to the free-stream temperatures for mixing layer simulations. These relations give
qualitatively correct trends in that the Schmidt number is respectively greater than
or less than unity for the proper mass fractions; however, the maximum value is 1.5
rather than 2 as observed in the more complete model. This allows the consideration
of Reynolds numbers that have the same magnitude as those for which transition
to turbulence was obtained in previous studies for both gas and drop-laden mixing
layers (Miller & Bellan 2000) making a comparison with different types of mixing
layers possible.

The functional dependences of the thermal diffusion factors on the primary variables
(p, T , Yi) are poorly understood, particularly at high pressure (see Bird et al. 1960 and
Chapman & Cowling 1970). For low-pressure conditions some theory exists suggesting
that αBK is nearly independent of the mass fraction (though it can generally be a
function of T ) (Bird et al. 1960 and Chapman & Cowling 1970). Most calculations
of thermal diffusion factors are performed using molecular dynamics theory, such
as in Sarman & Evans (1992); these calculations are very computationally-intensive
and have generally been used for esoteric species or combinations which are easier to
simulate. On the other hand, measurements of thermal diffusion factors are difficult
in that they may be plagued by parasitic convective effects in experiments that are
supposed to be of purely diffusive character, and suffer from dubious interpretation of
data when these parasitic effects are not included in the equations used to determine
the values of the thermal diffusion factors.

Finally, comparisons with the more accurate EOS of Harstad et al. (1997) show
that the (low-pressure) mixture reference enthalpy

h0 = Xnh
0
n +Xhh

0
h, (2.29)

is well fit using

h0
n

mn
= 656.72(T 1.071)

J

kg K
,

h0
h

mh
= 27.877(T 1.6414)

J

kg K
. (2.30)

2.4. Internal energy curve fit

The set of equations described above is closed and a solution can now be obtained;
however, there is a choice to be made regarding the most convenient primitive
variables. For example, in compressible flow simulations, the density, momentum and
energy equations, and the above state equation must be solved iteratively to get both
the temperature and pressure. In order to avoid computationally intensive iterations,
a highly accurate fit was here obtained for the specific internal energy of the mixture
(e) over the entire state space of interest, which is explicit in the temperature

T =

[
(TL)θ +

(
e− eL
eU − eL

)
{(TU)θ − (TL)θ}

]1/θ

, (2.31)
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Energy, MJ kg−1 E0 E1 E2 E3

e1(Yh;TL, ρL) 0.44142 0.51813 −1.8118× 10−3 6.12810× 10−6

e2(Yh;TL, ρU) 0.41489 0.47173 −4.4262× 10−2 2.25095× 10−3

e3(Yh;TU, ρL) 0.86090 1.78435 −1.9375× 10−3 4.78990× 10−6

e4(Yh;TU, ρU) 0.85262 1.76317 −4.9197× 10−2 2.59000× 10−3

Table 2. Polynomial curve-fit coefficients.

where the subscripts L and U refer to the lower and upper limit of validity of the fit,

θ = 1.14 + 0.667Y 0.676
h , (2.32)

eL = e1 +

[
ρ− ρL
ρU − ρL

]
(e2 − e1), (2.33)

eU = e3 +

[
ρ− ρL
ρU − ρL

]
(e4 − e3), (2.34)

and the upper and lower bounds are ρL = 8, ρU = 248, TL = 600 and TU = 1100
with the density in kg m−3 and the temperature in K. The limits of the density
correspond to the pressure limits of 40 and 80 atm. Finally, third-order polynomial
fits were obtained for the four remaining internal energy functions e1(Yh;TL, ρL),
e2(Yh;TL, ρU), e3(Yh;TU, ρL) and e4(Yh;TU, ρU) as follows:

ek = E0 + E1Yh + E2Y
2
h + E3Y

3
h , k = 1, 2, 3, 4, (2.35)

where the coefficients are provided in table 2. This particular fit also achieves
better than 1% maximum relative error when compared to the PR internal energy
(e = h− pv).

3. Configuration and numerical method
The configuration chosen is that of the temporally developing mixing layer de-

scribed in Miller & Bellan (1999) and depicted in figure 1. For three-dimensional
mixing layers, the streamwise (x1), cross-stream (x2) and spanwise (x3) coordinates
are defined; for two-dimensional mixing layers only directions x1 and x2 exist. Peri-
odic boundary conditions are used for the x1- and x3-directions, and non-reflecting
outflow conditions (Poinsot & Lele 1992) are employed for the x2-boundaries.

The appropriate initial conditions for simulating the evolution of mixing layers
have been a topic of much discussion, especially for density stratified situations.
According to stability theory (see Drazin & Reid 1981), there are two issues that must
be addressed: first, one must inquire about the basic (i.e. mean) flow, and then about
the appropriate disturbance.

3.1. The basic flow

3.1.1. Simulation conditions

The present strategy is to choose a basic flow and further verify the validity of this
choice. The initial cross-stream dependences of the mean velocity, temperature, and
mass fraction profiles are specified using an error function profile, erf (

√
πx2/δω,0),

where the initial vorticity thickness is δω,0 and δω(t) = ∆U0/〈∂u1/∂x2〉max with
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Figure 1. Physical configuration studied.

the brackets 〈 〉 indicating averaging over homogeneous (x1, x3)-planes for three-
dimensional layers, and over the x1-direction for two-dimensional layers. The density
profile is then calculated from the equation of state.

All simulations are conducted on a domain having L1 = 4λ1 = 29.16δω,0 where λ1

is the smallest forcing wavelength in the x1-direction (see below).
In order to obtain stationary vortices in the computational domain, we derived a

relationship between the convective velocity, Uc, and the convective Mach number,
Mc, by recalling that according to Papamoschou & Roshko (1988), the perfect-gas
spatial mixing layer convective velocity is

Uc =
U2/c2 + (

√
γ1/γ2)U1/c1

1/c2 + (
√
γ1/γ2)/c1

(3.1)

where the subscripts 1 and 2 denote the upper and lower stream, γ is the perfect
gas constant, and c2 = γRuT/m. The condition of stationary vortices for a temporal
mixing layer yields Uc = 0, thereby providing a relationship between U1 and Mc ≡
0.5(Mc1

+Mc2
) where Mc1

≡ (U1 −Uc)/c1 and Mc2
≡ (Uc −U2)/c2 as follows:

U1 =
2Mcc1

1 +
√
γ1/γ2

and U2 = −U1

c2

c1

√
γ1

γ2

. (3.2)

The above relations were derived under the assumption of calorically perfect gases,
an assumption not met for the present conditions. Preliminary simulations conducted
with a convective Mach number based on these relations resulted in translation of the
vortices throughout the simulation, confirming that a correction is required for real
fluids. For this purpose, a relatively simple correction is made by noting that c1 and
c2 in (3.2) should be the true real-gas sound speeds as1 and as2 , respectively, since they
appear through the definition of the Mach number. However, the heat capacity ratios
γ1 and γ2 result from applications of the calorically perfect relation c2 = γRuT/m.
Therefore a simple correction is achieved by replacing the heat capacity ratio with an
effective value, γ∗, which is related to the true sound speed through

a2
s ≡ γ∗RuT/m = γ∗p/(ρZ) (3.3)

where the compression factor Z = p/(ρTRu/m) indicates the deviation from perfect
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Run T2 ρ2/ρ1 N1 ×N2 (×N3) αIK αBK

1 600 12.88 200× 232 0.1 —
2 600 12.88 200× 232 1.0 —
3 600 12.88 200× 232 5.0 —
4 600 12.88 200× 232 — 0.1
5 600 12.88 200× 232 — 1.0
6 600 12.88 200× 232 — 5.0
7 900 4.27 200× 232 0.1 —
8 600 12.88 200× 232× 120 0.1

Table 3. Simulation parameters. All runs have four initial vortices and two pairings: Mc,0 = 0.4,
Re0 = 400, T1 = 1000 K, and p0 = 60 atm.

gas behaviour; one finds that√
γ∗1/γ∗2 = (as1/as2 )

√
(ρ1Z1)/(ρ2Z2) (3.4)

since p1 = p2. Using (3.2) and (3.4) one finds an expression valid for a general fluid

U1 = 2Mcas1

[
1 +

(
as1
as2

)√
ρ1Z1

ρ2Z2

]−1

, U2 = −
√
ρ1Z1

ρ2Z2

U1, (3.5)

where ∆U0 = U1 − U2 is the free-stream velocity difference across the layer. This
derivation being only approximate, one cannot expect the vortices to stay truly
stationary, a fact that can be observed for some of the simulations presented below.

Papamoschou & Roshko (1988) discuss Mc effects on the growth of spatially evolv-
ing, density-stratified mixing layers and show that for perfect gases the mixing layer
growth is a function of U2/U1, ρ2/ρ1, the ratio of the perfect gas constants and Mc.
Moreover, they show that the layer growth can be conveniently non-dimensionalized
by that of the incompressible mixing layer (i.e. Mc = 0) to obtain a consistent curve
displaying an initial reduction and a further saturation with increasing Mc. In the
present temporal study we do not address this compressibility effect, as all our simu-
lations are conducted for the same value of Mc,0 (see table 3). Here ‘compressibility’
is associated with the equation of state (i.e. κs of (2.15)) and all other manifestations
of compressibility (i.e. ∇ ·u or local Mc) are interpreted in relation to this basic aspect
of the fluid.

The reference viscosity is calculated from a specified value of the flow Reynolds
number defined as

Re0 =
0.5(ρ1 + ρ2)∆U0δω,0

µR
(3.6)

where the free-stream densities are calculated from a specified constant initial flow
pressure (p0), composition and free-stream temperature (T1 and T2).

We note that according to (3.5), the density ratio affects the value of ∆U0 and
the interpretation of the results should reflect this fact. This somewhat ambiguous
situation is inherent in the nature of typical direct numerical simulations and is
equivalent to that encountered when Re0 is varied at constant Mc: µR changes since
∆U0 is constant, and this is despite the fixed value of the free-stream temperature (the
free-stream temperature enters the calculation of U1 through Mc and thus through
as1 ), thereby introducing a similar ambiguity.

The conservation equations are solved numerically using the same numerical
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method as in Miller & Bellan (1999): a fourth-order explicit Runge–Kutta tem-
poral integration for all time derivatives and eighth-order-accurate central finite
differences for all spatial derivatives. The simulations are performed on a Hewlett-
Packard Exemplar parallel supercomputer using Message Passing Interface (MPI)
subroutines for inter-processor communications and the equations are parallelized
using three-dimensional domain decomposition.

3.1.2. Confirmation of the validity of the basic flow profile

Kozusko et al. (1996a) have investigated the structure of the basic flow for com-
pressible mixing layers in binary mixtures considering the effect of variable properties,
and have shown that the profiles are strongly dependent both on the species and on
whether the lighter stream is faster or slower than the heavy stream. Kennedy & Chen
(1998) have performed a study of basic flow effects on the stability of planar jets
under the assumptions of constant pressure, constant specific heats and unity Pr, but
they accounted for the effects of heat conduction and viscous dissipation. Since most
of the focus of the present study is on the influence of the thermal diffusion factors for
generally otherwise identical initial conditions equations, we explored the sensitivity
of the one-dimensional (the direction chosen is that of the stratification, i.e. x2) basic
flow to the values of these factors. Four laminar calculations were thus performed
with identical initial conditions but different values of αIK and αBK corresponding
to simulations discussed in § 4 (Runs 1, 3, 4 and 6 of table 3, respectively). These
calculations were conducted using both 232 and 1024 grid points; the results are the
same for both resolutions. The dynamic and thermodynamic variables are plotted in
figure 2 at a non-dimensional time t∆U0/δω,0 = 100, corresponding to the maximum
simulation time examined for the perturbed layer (see § 4). The illustrations show
that the density and velocity laminar profiles are insensitive to the thermal diffusion
factors at all times of the perturbed mixing layer simulations, and that as expected,
the temperature and mass fraction show increased diffusion with increasing thermal
diffusion factor. Thus, the one-dimensional results indicate that any effects of the basic
flow profile relaxation on the density, velocity or momentum will be nearly identical
in all of the mixing layer simulations – and therefore will not obfuscate the discussions
of effects attributed to diffusion coefficients. We note that all four laminar calculations
have the same initial density stratification. An additional question arises as to the ap-
propriate basic flow profiles for comparing layers with a different stratification, given
the fact that previous studies (e.g. Kozusko et al. 1996a) showed that the base state
flow is affected by the composition. However, if basic flow profiles depending on the
density ratio were specified, these would introduce a bias owing to their influence on
the diffusion velocities which would then be altered. This simple argument highlights
the difficulty in choosing totally uncontroversial basic flow profiles. For this reason,
the same basic flow profiles will be used for all simulations presented in § 4.

3.2. Stability and forcing

The stability of compressible mixing layers has been previously addressed by Maslow
& Kelly (1971) who computed the stability curves for a stratified mixing layer between
two streams (both spatial and temporal configurations), by Lu & Lele (1994) who
studied the effect of the density ratio on the growth of a spatial mixing layer, and by
Kozusko et al. (1996b) who explored the influence of compressibility on the growth
rate. Many additional interesting topics could be discussed in the context of stability
of the compressible layers. These topics include the influence of the disturbance mode
on the layer growth and the effect that it has on the domain size of the computation,
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Figure 2. Basic flow profiles for a one-dimensional (x2) flow: density (a), velocity (b), temperature
(c) and mass fraction (d) at the non-dimensional time t∆U0/δω,0 = 100.

the influence of the Soret and Dufour diffusional processes on the most unstable
wavelength, and the difference between exciting the layer using broadband versus
large-amplitude discrete mode disturbances. All these topics are subjects of research
in their own right, and are beyond the scope of this paper. We take here a more
utilitarian view point and note that we are not interested in quantitatively matching
our results with equivalent observations which, to our knowledge, do not exist. For
this reason, we eliminate the possibility of using broadband disturbances since they
are most commonly applied to three-dimensional mixing layers in order to achieve
a more ‘natural’ turbulent flow; however, the present simulations are for laminar
pre-transitional flows. Therefore, the use of exclusively small-amplitude broadband
disturbances will only result in increasing the simulation time with little or no return
on physical understanding. Also, since our emphasis is on the qualitative role of the
thermal diffusion factors on the development of the layer rather than on growth, we
do not seek a most unstable disturbance mode for exciting the layer. Instead, we
choose a disturbance that is the most unstable incompressible mode (see Moser &
Rogers 1991), with a domain size equal to four times the most unstable wavelength
(see below) and caution the reader about the possible influence of the domain size on
the growth rate calculated at the end of each simulation.
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Specifically, initial forcing perturbations are added to the velocity field in order to
excite in three-dimensions the growth of both spanwise and streamwise disturbances as
in Miller & Bellan (1999); for two-dimensional layers, only spanwise growth is excited.
Sinusoidal velocity perturbations are superimposed on the base flow profile having
wavelengths L1, L1/2, and L1/4. All the simulations are performed by starting initially
with four rollers and encompass two pairings; for all the simulations performed here
L1 = 0.2 m. The disturbances are first generated as a spanwise vorticity distribution of
the form ω3(x1, x2) = −∑3

m=1 f(x2)|Am sin(2πx1/(2
mλ1)−π/2)|, where the cross-stream

weighting is f(x2) = exp (−πx2
2/δ

2
ω,0), and the relative amplitudes are A1 = 1, A2 = 0.5,

and A3 = 0.35. For three-dimensional simulations, an additional streamwise vorticity
disturbance having wavelength λ3 = λ1 is generated from the function ω1(x2, x3) =
f(x2)[sin(2πx3/λ3) + 0.025 sin (πx3L3)] (the second sinusoidal wave is used to break
the symmetry between adjacent sets of streamwise vortices). The corresponding two-
dimensional or three-dimensional velocity disturbance is then calculated through the
solution of the appropriate Poisson equation. The relative amplitudes of the specified
spanwise (F2D) and streamwise (F3D) disturbances are equal to the ratio of the
respective circulations relative to the approximated circulation of the mean velocity
profile (λ1∆U0).

4. Results
Displayed in table 3 are the parameters used in the simulations performed in

this study; all simulations, except Run 7, use the same value of ∆U0. Although in
the previous study of Harstad & Bellan (2000) approximate values for the thermal
diffusion factor were found, for a general binary species mixture such a result is not
available. In the absence of this information, the natural tendency is to assume that
the thermal diffusion factor is constant over the studied range of the state variables,
and to assign it a value. Therefore, it is first important to identify the effect of the
assumed constant value of the thermal diffusion factor. An additional complication
arises in this argument since, as discussed above, one may define two thermal diffusion
factors, only one of which converges to the kinetic theory value. Equation (2.21) shows
that if one could measure one of these factors, the other one would be known as well
since their difference is a thermodynamic function that can be calculated from the
EOS. The question that comes forth addresses, then, the importance of the identity of
the assumed constant thermal diffusion factor: Is there only a quantitative or is there
also a qualitative difference between the predictions obtained on assigning constant
values to the two forms of the thermal diffusion factor? Runs 1–3 and Runs 4–6
address the question of the value of each of the forms of the thermal diffusion factor,
while comparisons between Runs 1 and 4, 2 and 5 and 3 and 6 elucidate the effect
of the identity of the assumed constant value thermal diffusion factor. Since these
studies are qualitative by necessity and intent, Runs 1–6 represent two-dimensional
simulations which are sufficient (in that a third dimension is not necessary) for the
intended goal. The remaining Runs 7 and 8 are performed with a small value of
αIK to emulate the validated heptane–nitrogen model of Harstad & Bellan (2000).
While the initial heptane temperature for Runs 1–6 is approximately that of fuel
jets injected in a diesel and gas turbine combustion chamber, Run 7 explores the
effect of increasing the heptane initial temperature; we caution that the interpretation
of Run 7 with respect to the other runs may be obfuscated by the different initial
energy stratification which may affect the layer evolution. Finally, Run 8 is a three-
dimensional simulation, and its results are used to examine the possibility of the layer
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reaching a transitional state. All simulations extend to the end of the second pairing,
reaching a final non-dimensional time that exceeds that of previous three-dimensional
transitional gaseous and drop-laden shear layers of Miller & Bellan (2000).

The presentation of the results focuses first on the global evolution of the mixing
layer with the purpose of determining the effect of the thermal diffusion factors as
discussed above. The influence of their value and identity on the final state of the
layer is then illustrated by the instantaneous fields at the final simulation time. The
discussion of the instantaneous fields is followed by the first-order statistics which aid
in further assessments of the uncertainties associated with the thermal diffusion factors
and also identify features of the layer truly unique to general fluids at high pressures.
Finally, the second-order statistics confirm the conceptual picture developed from
the zero- and first-order statistics and give an ultimate explanation for the particular
aspects of the flow. Conclusions and further discussion are offered in the last section.

4.1. Mixing layer evolution

Hernan & Jimenez (1982) have established through interpretation of their data that
most of the growth of a mixing layer is due to entrainment, not to pairing, and that as
much as 80% of the entrainment occurs during the lifetime of the individual spanwise
vortex structures (the rollers) rather than during vortex pairing; this interpretation of
their observations has been questioned by Cortesi et al. (1999) who point out that
the definition of layer growth is not unique. The quantity that is most often used to
measure such growth is the vorticity thickness, δω, although sometimes it is preferable
to measure it by the momentum thickness,

δm =
1

(θ1 + θ2)2

∫ L2/2

−L2/2

(θ2 − 〈ρu1〉)(θ1 + 〈ρu1〉) dx2

where θ1 = |〈ρu1〉|x2=L2/2 and θ2 = |〈ρu1〉|x2=−L2/2, because it is an integral quantity
and therefore does not exhibit the fluctuations inherent in δω . Cortesi et al. (1999)
showed that several measures of entrainment, including the momentum thickness, are
qualitatively similar. While the growth is primarily a consequence of entrainment, the
product thickness defined as

δp =

∫∫∫
V

ρYp dV

in mass units, where Yp = 2 min(Yh, Yn), is a direct consequence of molecular mixing
as explained by Cortesi et al. (1999). Both δm/δω,0 and δp/δp,0 are illustrated in figure
3 for Runs 1–8 as a function of the non-dimensional time t∆U0/δω,0.

As expected, all δm/δω,0 curves (see figure 3a) coincide for two-dimensional layers
up to the first rollup (t∆U0/δω,0 ≈ 25) after which differences occur: for exam-
ple, all lower T2 layers are thinner due to the larger heptane density (stronger
density stratification) which impedes entrainment. The increased thickness of the
larger T2 layer is also attributable to the larger ∆U0 (353 versus 296 m s−1) which
changes with initial stratification at fixed Mc, as noted above. For larger initial den-
sity stratification (see table 3), the layer has a larger inertia which hinders rollup
and retards strong forcing effects (whose manifestations are the oscillations in the
momentum thickness curves). In our context the inertia is characterized by ρu,
and since ρ2u2/ρ1u1 =

√
Z1ρ2/(Z2ρ1) > 1 (see table 3), this ratio is larger with

increasing ρ2/ρ1 since Z1/Z2 = O(1). Indeed, if one defines a Reynolds number
associated with each of the streams, Rej ≡ ρj |uj |(L2/2)/µ(Tj), it can be shown that

Re2/Re1 = (ρ2/ρ1)
1.2(Z2/Z1)

0.2(m1/m2)
0.7, and it is its magnitude that characterizes
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Figure 3. Non-dimensional momentum thickness (a) and non-dimensional product thickness
(b) evolution for the simulations listed in table 3.

the momentum-related initial strength of the density stratification; increasing density
stratification is obtained with larger Re2/Re1 than unity. For example, the initial value
of Re2/Re1 is 8.33 for Runs 1–6 and Run 8, and it is 2.17 for Run 7, indicating the
smaller density stratification in Run 7.

The layer growth (figure 3a) is quite insensitive to the value of the constant αBK ,
whereas increasing layer growth is obtained with increasing constant αIK values (the
reasons for this behaviour are explained below). One global indication of transition
occurrence is a sudden and sharp increase of the momentum thickness and its
sustained accelerated growth rate; however, transition to turbulence may occur only in
three-dimensional layers (rather than two-dimensional layers) because of the necessary
vortex stretching that is prerequisite to formation of turbulent small-scale structures.
Flow visualizations (see below) reveal that transition does not occur in Run 8 despite
the large simulation time and the completion of the two pairings; in contrast, for
gaseous and drop-laden mixing layers, transition was obtained by Miller & Bellan
(2000) for similar Re0 prior to t∆U0/δω,0 ≈ 100. The inability to achieve turbulence
transition in Run 8 is a direct consequence of the large density stratification which
stabilizes the flow. The suppression/delay of transition may also be promoted by
secondary effects (such as the appearance of strong density gradient regions) as will
be discussed below.

A measure of the global mixing, rather than local mixing, is given by the product
thickness plotted in figure 3(b); local mixing measures the effectiveness of the small-
scale processes and the changes in the local distribution of the species, whereas
global mixing encompasses the influence of all processes having an influence on the
mass fraction distribution. The evolution of the product thickness can be explained
by recalling that mixing can be limited by either small-scale processes or by the
entrainment rate. Clearly, in examining the small scale processes, the largest mixing
occurs in the three-dimensional layer because of the emerging turbulent small scales,
as will be discussed below; in contrast, two-dimensional layer mixing is confined to
molecular mixing which is weaker. In this sense, it can be stated that product thickness
growth in two-dimensional layers is primarily due to stirring which stretches surfaces,
not to mixing that relies on the small-scale diffusional processes. In three-dimensional
layers, stirring may also be important as discussed by Atsavapranee & Gharib (1997)
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in that once the small scales do appear, it promotes diffusional mixing. Prior to
rollup, the weakest mixing (with the exception of the largest αBK case) is that in the
higher T2 layer because of the reduced diffusivity. However, after pairing it is the
Run 7 product thickness that becomes the largest due to the larger layer growth
(figure 3a) resulting from the larger entrainment. With the exception of the largest
constant-αBK case which consistently exhibits the weakest mixing, all constant-αBK
simulations display a slightly reduced mixing up to pairing, and an enhanced mixing
thereafter when compared to the constant-αIK simulations; this effect is associated
with the larger layer growth. For Run 6, the weak concentrational mixing is consistent
with the larger molar flux cross-terms with increasing αBK, as discussed below and
shown by the second-order statistics.

The identity of the assumed constant thermal diffusion factor has a direct influence
on the response of the layer to forcing since by t∆U0/δω,0 ≈ 100 (corresponding to the
end of the second pairing) the constant-αIK simulations, in contrast to the constant-
αBK simulations, feature a sustained growth without the plateau characteristic of a
strong forcing influence. What distinguishes the momentum evolution of the two types
of layers is the evolution of the density stratification during rollup and pairing. With
increased, fixed positive αIK , one imposes an impedance in the heat flux (see (2.17))
since ∇T and ∇Yh are initially opposed, resulting in larger enthalpy gradients and
larger density gradients (through the EOS). To explore the influence of the density
stratification in vorticity production, we focused attention on Run 8 so as to include
the effect of the stretching and tilting term which is absent in two-dimensional layers.
The budget of the vorticity equation

Dω

Dt
= (ω · ∇)u− (∇ · u)ω − ∇

(
1

ρ

)
× ∇p+ ∇×

(
1

ρ
∇ · τ

)
(4.1)

where D/Dt is the substantial derivative and ω ≡ ∇×u, and of the vorticity magnitude
equation

D(ω2)

Dt
= 2ω · (ω · ∇)u− 2(∇ · u)ω2 − 2ω · ∇

(
1

ρ

)
× ∇p+ 2ω · ∇×

(
1

ρ
∇ · τ

)
(4.2)

were both examined in contour plots of the spanwise vorticity and of the enstrophy
in the between-the-braid plane, as well as (x1, x3)-plane averages. The first term in
the above equations represents the stretching and tilting contribution, the second
term describes the effect of dilatation, the third term is the baroclinic participation
in vorticity production, and the last term portrays the viscous contribution. Contour
plots (not shown) reveal that the dilatation term exhibits regions of both negative
and positive contributions that may locally rival in magnitude the baroclinic term
which is predominantly positive. Most of the activity of both terms is concentrated in
regions of large density gradient magnitude (see figure 7) created during entrainment
and mixing. Plane averages for the spanwise vorticity and the vorticity magnitude,
illustrated in figures 4a and 4b, respectively, show that on average the stretching term
dominates all other terms, that the baroclinic and the viscous terms approximately
balance each other in magnitude, and that the dilatation term is negligible.

When fixing αBK positive, the molar flux cross-term impedance increases (see (2.18))
resulting in reduced mixing, and therefore in a smaller product thickness. However,
fixing αBK positive also yields very large αIK (illustrated below in the discussion of the
first-order statistics) as a result of the specific set of species and the chosen positive
values for αIK and αBK; the very large αIK hinders the heat flux and helps maintain
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Figure 4. Plane-average contributions of different terms to the spanwise vorticity (a) and the
enstrophy (b) for Run 8. The calculations are for a between-the-braid plane at the non-dimensional
time t∆U0/δω,0 = 100.

large density gradients. Note though that fixing αBK yields a larger value of αIK (Runs
4–6) than fixing αIK to have the same value as the fixed αBK (Runs 1–3) due to
the particular values of the thermodynamic term in (2.21). The larger values of αIK
indicate larger entrainment, explaining why the momentum thickness is larger for the
fixed αBK runs (except towards the end of the calculation). The larger role played by
αIK in determining entrainment can be understood from Lewis number considerations,
as follows: Harstad & Bellan (1999) showed that an effective Lewis number, Leeff ,
can be defined for supercritical conditions which is larger than the traditional Lewis
number as it accounts for the effects of the difference in the molar enthalpy of the
two species being transported through gradients. The large Leeff implies that the
heat flux takes precedence over the mass flux in determining the state of the layer,
particularly the density profile. A smaller αIK implies less heat flux impedance, smaller
enthalpy gradients and thus smaller density gradients, and therefore smaller vorticity
production resulting in reduced entrainment when compared to the fixed αBK case
where the resulting αIK is larger.

Therefore, it is apparent that αBK influences mixing whereas αIK influences en-
trainment; the fundamental reasons for these specific functions are discussed below
when examining second-order statistics. This is consistent with αBK determining the
mass diffusion cross-term, and αIK determining the heat flux cross-term and thereby
changes in the density profile. Although changes in density profiles may be due to both
changes in enthalpy and changes in mass fractions, it is expected that the changes
in enthalpy will play a considerably larger role. This is consistent with the fact that
changes in density due to mass fraction changes are expected to be moderate if the
molecular weights of the species are similar, and is also consistent with the relatively
larger effective thermal diffusivity.

4.2. Instantaneous flow visualizations

Flow visualizations can be very revealing of the instantaneous features of the layer
which are removed when illustrating the cross-stream averages in two-dimensional or
three-dimensional layers. Moreover, the instantaneous fields may provide one of the
most direct ways to qualitatively compare characteristics of numerically simulated
temporal mixing layers with those of experimentally observed spatially developing
mixing layers. For this reason we present here contour plots of the primary variables
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and of the quantities that are most distinctive to supercritical fluid flows at the final
simulation time t∆U0/δω,0 = 100.

4.2.1. Two-dimensional layers

Since the purpose of the two-dimensional simulations is studying the influence of
the identity and value of the assumed constant thermal diffusion factors and that of
the initial temperature of the hydrocarbon stream, we present here only those results
that are pertinent to addressing this issue; we defer the more complete discussion of
the flow characteristics to the section on the three-dimensional flow visualizations.

In figure 5 we illustrate the temperature (a and e), density (b and f) and heptane
mass fraction profiles (c and g), as well as the non-dimensionalized spanwise vorticity
(d and h) for Run 1 (a–d) and Run 4 (e–h). Comparison of the primary-variable profiles
shows both a larger magnitude of the temperature gradient due to the large positive
αIK, and considerably more structure in Run 4, implying more developed small-
scale structure and more fluctuations (see discussion on second-order statistics) for
the assumed constant-αBK simulation. This observation is confirmed by comparisons
of the spanwise vorticity in figures 5(d) and 5(h) where the contour levels were
intentionally chosen the same, but the highest level appearing in figure 5(h) does not
appear in figure 5(d). We discuss the fundamental reasons for these aspects in the
statistical analysis below.

The spanwise vorticity is often used to visualize the large-scale rollers in low-Mc

mixing layers because vorticity with closed isosurfaces is a reasonable indicator of
vortices. In this study, owing to the initial mean velocity profile, the corresponding
initial spanwise vorticity is negative everywhere in the layer. Since the only two mech-
anisms for increasing vorticity in two-dimensional simulations are the compressibility
through ∇ · u and the density gradients, the appearance of positive vorticity over a
wider region in the layer in Run 4 implies higher compressibility and/or stronger
density gradients effects. As discussed above, density gradients are stronger in Run 4
than in Run 1, and examination of Mach number contours (not shown) indeed leads
to the conclusion that Run 4 exhibits higher local compressibility than Run 1; and
figure 14 below confirms this interpretation of the results as well.

To explore the effect of the value of the thermal diffusion factors we examined
visualizations (not shown) of the non-dimensionalized spanwise vorticity for Runs 3
and 6 and compared them with those of Runs 1 and 4. Increasing the value of the
thermal diffusion factor, or changing the identity of the constant thermal diffusion
factor from IK to BK, induces increasing distortion in these features of the layer.

4.2.2. Three-dimensional layers

Primary variables

Portrayed in figure 6 are the temperature (6a), density (6b) and heptane mass
fraction (6c) in the braid for Run 8; the contour plots for the between-the-braid plane
are similar. As the layer rolls up, fluid from the cooler, heptane region is entrained
and mixes with the hotter, nitrogen fluid producing a highly non-uniform distribution
of heptane in the roller; had the layer developed to transition (see discussion below),
the heptane distribution would have been more uniform across the layer. The large
density stratification of the layer (ρ2/ρ1 = 12.88; see table 3) is responsible for the
relatively weak roller that results from the pairing of the four initial rollers.

In figure 7 we display the density gradient magnitude in the braid (7a) and in
between-the-braid (7b) planes. The most prominent feature in figure 7 is the existence
of spatially concentrated regions of strong density variation. This distinctive feature is
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not exhibited by density-unstratified temporal mixing layers and, as will be discussed
below, plays a crucial role in the understanding of the evolving turbulent scales in
the flow.

Turbulent scales development

In contrast to two-dimensional mixing layers, in three-dimensional mixing lay-
ers there are four mechanisms for affecting vorticity (see (4.1)): dilatation, viscous
dissipation, density gradient effects and vortex stretching; therefore, the increased
occurrence of positive spanwise vorticity with respect to the two-dimensional layers
may be a direct indication of vortex stretching, creation of small scales and transitions
to turbulence. Figure 8 illustrates the spanwise vorticity in the braid; the results are
similar for the between-the-braid plane. Clearly, very little positive vorticity has been
generated, a fact that will be documented below in the timewise first-order statistics.
This confirms that mixing is strongly entrainment limited over the entire simulation
time, as also indicated by the evolution of the momentum and product thickness.

The delayed and sometimes suppressed development of turbulent scales in super-
critical mixing layers is due to both the initial density stratification and to the for-
mation of the sharp density gradient regions as illustrated in figures 7(a) and 7(b). For
example, Hannoun, Fernando & List (1988) observed that a density interface is very
effective at damping turbulent eddies, being qualitatively similar to a rigid flat plate.
Large eddies impinging on a density interface were found to ‘bounce’ back without
significant entrainment of unstirred fluid instead of overturning. The same conclusion
was reached by Briggs et al. (1998) who examined shear-free stably stratified mixing
layers under the Boussinesq (i.e. constant density) approximation. Since the layer
growth depends primarily on entrainment, and since it is this accelerated growth that
promotes the appearance and evolution of the small turbulent scales, this damping
mechanism could be enhancing the effect of the initial density stratification. The
coupling between entrainment and mixing is manifested by the fact that the vertical
position of any portion of fluid depends upon its density which is the result of mixing.
In fact, Briggs et al. (1998) note that without the large-scale overturns, transfer of
energy from the large to the small scale diminishes, thereby hindering transition to
turbulence. To ascertain the effect of the large-| ∇ρ | regions in influencing the damp-
ing of the emerging small scales, Okong’o & Bellan (2000) examined the dissipation
using an enlarged database corresponding to Run 8. The results showed that at the
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time following the culminating global positive spanwise vorticity, most of the activity
was concentrated at locations of large |∇ρ|. This dissipation mechanism was consid-
ered responsible for the lack of transition, as formed small scales were damped by
the region of large |∇ρ| which acted similarly to a material interface. The behaviour
of the layer was shown to be the direct consequence of the two competing processes
of entrainment producing strong density gradients (a stabilizing effect) and mixing
reducing the density gradients (a destabilizing effect).

Thermodynamic variables

The compression factor, Z , and the mass diffusion factor, αD , are measures of
departures from perfect gas and ideal mixture behaviour, respectively; for a perfect
gas Z = 1 and for an ideal mixture αD = 1, these being the situations that are
generally investigated. Detailed discussion about real gases can be found in Prausnitz
et al. (1986), and Cussler (1984) comments upon the value of the mass diffusion factor
in different thermodynamic regimes.

Figure 9 shows that the layer displays considerable departures from the typical
perfect gas, ideal mixture situation. Both in the braid plane (figure 9a) and in the
between-the-braid plane (not shown) the largest departures in Z occur in the heptane
region as well as in the highest density gradient regions identified in figure 7a and 7b.
In contrast to Z , most of the departure from mixture ideality (see figure 9b; αD has
the same qualitative behaviour in the between-the-braid plane) occurs, as expected,
in the mixed fluid, and also, similarly to Z departures from unity, in the high density
gradient regions. Since the largest αD departures from unity are in the highest density
gradient regions, this means that the observed wisps (which are in the highest den-
sity gradient regions) enclose a fluid that is molecularly mixed (αD < 1) but that
will tend to resist further mixing because of non-ideality (the Fickian diffusive term
tends to weaken as it progresses because it decreases αDD as αD decreases). Therefore
we have identified at supercritical conditions a suppressed diffusional (molecular)
mixing mechanism that is a direct consequence of thermodynamics through mixture
non-ideality (i.e. αD) and effectively decreases the mass diffusivity (see (2.19)).

The general conclusions from the visualizations are that the choice of constant αBK ,
with consequent large αIK and reduced heat flux, promotes the maintenance of strong
density gradients, shear and vorticity as especially illustrated by the results of Run 6.
In contrast, constant-αIK simulations promote diffusional concentration mixing, this
being a direct consequence of a large enthalpy difference ((2.21)), producing a large
magnitude, negative αBK and strong coupling in the mass flux. Therefore, constant
moderate αIK combined with αD effects are contrary in that the former enhances the
molar fluxes (αBK < 0) and smears mass fraction gradients inducing a greater diffu-
sional mixing. In contrast, both αD and constant αBK inhibit molar fluxes; the resulting
large αIK from the corresponding value of αBK inhibits the heat flux. Since the relation-
ship between αIK and αBK is determined by thermodynamics, it is thus species-pair
dependent, and therefore these conclusions regarding αIK and αBK are not universal.

4.3. Statistical profiles

The flow visualization at the final time indicated that there are important differences
between the detailed results of constant-αIK and constant-αBK simulations; however,
it is only through statistical analysis that the fundamental reasons for these differences
can be identified. Therefore, we devote this section to calculations of mean values and
fluctuating statistical quantities at the final time in order to isolate the influence of the
assumed constant thermal diffusion factors upon both the other transport properties
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Figure 10. Mean primary variables as a function of a non-dimensional cross-stream variable:
temperature (a), density (b), heptane mass fraction (c) and pressure (d) for Runs 1–8 at the
non-dimensional time t∆U0/δω,0 = 100.

and the heat and molar fluxes. Since it is these fluxes that determine the variation of
the primary variables, we also want to isolate the thermodynamic effects upon these
fluxes and explore their variation with the initial heptane temperature.

4.3.1. First-order statistics

The quantities of interest can be categorized into the primary variables, the thermo-
dynamic variables, the transport properties, and finally the fluxes. For each of these
quantities, we present mean quantities that are calculated by either averaging over the
streamwise direction for two-dimensional layers, or over homogeneous (x1, x3)-planes
for the three-dimensional layer.

The mean primary variables (T , ρ, Yh and p) illustrated in figure 10(a–d) for Runs
1–8 show a closeness of the averaged profiles for Runs 1–6 and Run 8 for all the
variables except the pressure. It is only for the largest constant αBK that the density
and temperature exhibit a small peak on the nitrogen side of the layer, while the
temperature and the heptane mass fraction respectively display a local maximum
and a local minimum at the site of the initial boundary between the two fluids. A
larger initial temperature in the heptane stream induces an accordingly lower density
and a more gas-like behaviour. The pressure is the only quantity which shows more
important variations with the identity and value of the thermal diffusion factors, and
the local pressure minimum displayed in the layer is the direct consequence of the
strong pairing.
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sound (d) for Runs 1–8 at the non-dimensional time t∆U0/δω,0 = 100.

With the exception of Run 7 which displays a closer resemblance to the well-
known atmospheric conditions, most of the thermodynamic quantities, Z, αD, Cp and
as shown in figure 11(a–d) have a similar average variation for all runs; an exception
is Run 6 for which Z exhibits a local minimum at the nitrogen edge of the layer and
for which the mixture has the largest departure from ideality. In agreement with the
flow visualizations, most mixture non-ideality for the αBK-constant runs is found at
the edges and in the innermost region of the mixing layer.

To examine the peculiarities of the transport coefficients under supercritical con-
ditions, mean profiles of αIK, αBK and λ′IK/λ are shown in figures 12(a) to 12(c)
respectively. The variation of αBK at prescribed, constant αIK and that of αBK at
prescribed, constant αBK is entirely the result of (2.21) which states that the difference
of the two thermal diffusion factors is a thermodynamic function. Since this function
is particular to the species under consideration, the following discussion applies only
to the heptane–nitrogen pair at these thermodynamic conditions and cannot be gener-
alized to other species combinations. When αIK is assumed positive and constant, αBK
is generally negative and large across the mixing layer (see figure 12b) and therefore
λ′IK/λ < 1. For a pure substance λ′IK/λ = 1; however, for mixtures this is no longer the
case as consistently shown in figure 12(c): it is precisely in the mixing region that the
excursions from unity occur and they are enhanced by larger values of the assumed
constant αBK . Since for prescribed constant αIK figure 10(a) shows that αBK is generally
negative and large, the associated term in (2.18) has a contribution to the molar flux
that has the same sign as the mean temperature gradient (which is positive) while the
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term associated with the mean mass fraction gradient is positive (because the gradient
is negative); this means that the Soret term effectively increases the Fickian term, as
shown on figure 13(a) for the smallest αIK value. In fact, the plots in figure 13(a) show
that the molar flux vector is on average aligned with the Fickian term and is enhanced
by the Soret effect, while the pressure contribution is small (as also found in the pre-
vious fluid drops study of Harstad & Bellan 2000). In the same manner, the heat flux
has a positive contribution from the Dufour term in J ′, and a negative contribution
from the thermal conductivity term resulting in a vector magnitude dominated by
the Fourier term (see figure 13b) with the pressure and Dufour contributions being
negligible. As the value of αIK increases, all these effects become exacerbated.

A completely different picture emerges from the assumed constant αBK simulations.
Under these conditions, αIK is generally positive and large across the mixing layer,
implying that λ

′
IK/λ > 1 as clearly seen in figure 12(c). Similar arguments to those

above lead to the result that the Soret term is negligible (see figure 13c), the molar
flux being essentially represented by the Fickian contribution, and that the Dufour
term is significant, generally anti-aligned with the Fourier term and thus reduces the
heat flux (see figure 13d). The pressure contribution is again found to be unimportant.

These considerations indicate that accurate predictions of fluid flow behaviour must
necessarily rely upon the accurate knowledge of the value of the thermal diffusion
factors.
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Figure 13. Mean mass flux (a, c) and heat flux (b, d) vector magnitudes versus a non-dimensional
cross-stream variable for Run 1 (a, b) and Run 4 (c, d) at the non-dimensional time t∆U0/δω,0 = 100.
The total heat and the molar flux (Q total and J total, respectively) are considered to be sums
of three terms proportional to the temperature gradient [Q(dT/dx) and J(dT/dx)], mass fraction
gradient [Q(dY /dx) and J(dY /dx)] and pressure gradient [Q(dp/dx) and J(dp/dx)].

4.3.2. Second-order statistics

The above discussion primarily identified the differences in behaviour between
assumed constant-αIK and assumed constant-αBK two-dimensional mixing layers, and
related the difficulty of achieving transition in the strongly density stratified flow.
However, none of the above results enables us to quantitatively assess the final state
of the fluctuations created during the evolution of the layer and how they relate to the
discussed mean quantities. Second-order statistics are ideally suited for exploring the
differences in the final state of the layer due to the evolved fluctuations in the dynamic
and thermodynamic quantities. Therefore, here we devote attention to the evolution of
surface (for two-dimensions) or volume (for three-dimensions) averages of the relative
positive fluctuations of the spanwise vorticity to corroborate our previous findings
related to compressibility effects in two-dimensions; and to vortex stretching, creation
of small scales and turbulence transition in three-dimensions. We also investigate
the kinetic energy profile at the final simulation time in order to assess the energy
distribution in the layer, and finally we examine the distribution of the correlations
of the gradients of temperature and mass fraction fluctuations at the final time as a
measure of Soret and Dufour effects.

Shown in figure 14 is the root mean square of the positive fluctuations of the span-
wise vorticity as a function of the non-dimensional time (H is the Heaviside function).
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Runs 1–8.

Consistent with the final time flow visualization, there is no sudden emergence of
small scales in the three-dimensional layer; as mentioned above, the sudden increase
noticeable in the two-dimensional layers is not indicative of turbulence initiation, but
of ∇·u (i.e. local) compressibility and density gradient effects. Since ∇·u contains both
Mc effects (through the isentropic compressibility) and dissipation effects, examination
of Mc contours (not shown) is indicative of how Mc compressibility affects ∇ · u and
eventually the vorticity. Indeed, Mach number contours of constant-αBK runs feature
higher values than those of constant-αIK runs, consistent with the figure 14 higher
vorticity for the constant-αBK cases.

The mean kinetic energy, K = 0.5〈u′iu′i〉, depicted in figure 15 at the final simulation
time reveals a maximum in the nitrogen side of the mixing layers indicating that it is
there that most fluctuations occur; for the three-dimensional mixing layer the location
of the maximum is shifted further towards the nitrogen side. The larger kinetic energy
for the larger T2 mixing layer is a consequence of the small momentum ratio of the
two streams which makes it easier to entrain and to create the small-scale structure.

The ultimate explanation for the dissimilarity between assumed constant-αIK and
assumed constant-αBK two-dimensional mixing layers is apparent in figure 16 where
the distribution of the single and mixed correlations of the gradients of temperature
and mass fraction fluctuations at the final time are illustrated. The striking feature
of these correlations is the strong fluctuations excited when αBK is assumed constant
and large, whose magnitude decreases with that of αBK . These fluctuations are related
to the dissipation and act to reduce the scalar temporal variance, which explains
the reduced growth of the layer, the increased growth with increasing T2 and the
inability of the layer to reach transition. An important aspect of these correlations
is that except for the large T2 case, 〈∇T ′∇Y ′h 〉 6 0 indicating that for large constant
αBK (and consequently for large positive αIK) each of the Soret and Dufour terms
is strongly negatively correlated at large initial temperature ratios between the two
streams; in fact, the only instance when these cross-transport terms are positively
correlated is when T2 is larger, indicating that the memory of the initial conditions is
lost. These strong correlations are a direct result of the strong cross-coupling; if they
were absent, there would be strong fluctuations in the heat flux which are unphysical
because diffusion processes smear profiles at the molecular level. Alternatively, one
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Figure 15. Kinetic energy versus a non-dimensional cross-stream variable at the non-dimensional
time t∆U0/δω,0 = 100.

may state that since the fluctuations of the heat flux vector are necessarily limited
owing to the diffusional processes, strong cross-term coupling through fixed positive
αBK implies that strong correlations must occur. These findings explain why αBK
influences mixing whereas αIK influences entrainment: αBK determines the diffusional
cross-term and therefore influences the diffusional mixing; αIK determines the heat
flux cross-term and thus more dramatically influences the enthalpy, temperature and
density profiles, as well as the amounts of shear and vorticity.

5. Summary and conclusions
A direct numerical simulation of a supercritical mixing layer has been conducted

using a system of governing equations including the continuity, the momentum, the
energy and the species conservation equations, and an equation of state for real gases.
This equation of state was based on pure species reference states accurate within 1%
of more highly accurate equations of state over the range of variables used in this
study. The diffusional fluxes are mathematically described according to fluctuation-
dissipation theory which has been used in a previously validated model, and include
Soret and Dufour terms along with the well-known Fickian and Fourier terms that
dominate at low pressures. Moreover, a term proportional to the pressure gradient
appears as well, but the results of the simulations show this term to be negligible over
the entire range of parameters studied.

Special attention has also been devoted to the appropriate calculation of transport
coefficients, with the exception of the reference viscosity which is set by the initial
value of the Reynolds number. The diffusivity and thermal conductivity values are
computed from calculated values of the Schmidt and Prandtl numbers through
expressions which are approximate fits to the correct values as functions of the mass
fraction. Owing to the dual possibility in mathematically formulating the heat flux
vector as shown by Harstad & Bellan (2000), several possibilities are available for
defining the thermal conductivity; however, only one of these converges to the kinetic
theory definition. Some of our results show the ratio between the flux defined and the
correct definition of the thermal conductivity.

Similar to the thermal conductivity definition, there are also two possibilities for
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Figure 16. Cross-stream distribution of the single and mixed correlations of the gradients of
temperature and mass fraction fluctuations at the non-dimensional time t∆U0/δω,0 = 100: 〈(∇Y ′h )2〉
in (a); 〈(∇T ′)2〉 in (b); 〈∇Y ′h∇T ′〉 in (c).

defining the thermal diffusion factor, and their difference is a thermodynamic function
as shown by Harstad & Bellan (2000). In general, the magnitude of these thermal
diffusion factors is not well documented, and therefore part of our study explores the
differences between the predictions obtained by setting constant and positive each of
the defined thermal diffusion factors.

The configuration studied is that of a temporal, forced two-dimensional or three-
dimensional mixing layer where the hydrocarbon is in the lower stream and is initially
at a lower temperature than the upper nitrogen stream. Although the approximate
value of the thermal diffusion factor for heptane–nitrogen was determined from the
previous study of Harstad & Bellan (2000), since such values are not generally avail-
able, two-dimensional mixing layers are used to study the influence of the assumed
constant thermal diffusion factors. Additionally, the influence of the larger initial tem-
perature of the hydrocarbon stream is studied as well. The three-dimensional mixing
layer results are used to evaluate the influence of the density stratification on transition
to turbulence (which has not been achieved) in the absence of gravitational effects.

Our conclusions reveal the different impact of the two forms of thermal diffusion
factors, the effect of the mass diffusion factor and that of the compression factor on
the entrainment and growth of the layer.

The results show that when assumed constant, one of the thermal diffusion factors
is intimately related to species mixing, whereas the other is intimately related to
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entrainment. In all cases, mixing is found to be entrainment controlled as inherently
the two-dimensional mixing layers do not develop turbulent features owing to lack of
vortex stretching, and as the three-dimensional layer mixing is inhibited by the large
momentum change necessary to entrain the lower stream. This results in minimal
formation of small turbulent scales as indicated by both flow visualizations and time-
wise evolution of relative positive spanwise vorticity fluctuations. Augmentation of
the initial temperature of the hydrocarbon stream decreases the density stratification,
resulting in increased turbulent kinetic energy and increased layer growth.

Quantification of the thermodynamic state of the mixture shows that the mixture
exhibits strong departure both from a perfect gas and from mixture ideality. In
fact, the departure from mixture ideality reduces diffusional (molecular) mixing and
counteracts the effects of one form of assumed constant thermal diffusion factor.

For the supercritical temporal mixing layers examined here we have also identified
a secondary mechanism (the primary one being the initial density stratification)
that may hinder transition to turbulence. The formation of very sharp local density
gradients induces additional stratification, and since density interfaces were found in
previous studies to hinder entrainment and transfer of energy from large- to small-
scale eddies, this mechanism may suppress transition. This suppression is amplified
by the effect of mixture non-ideality which reduces molecular mixing.

Finally, the completely different roles of the two forms of thermal diffusion fac-
tors, one promoting density gradients, shear and vorticity, and the other promoting
diffusional mixing, imply that accurate predictions of shear layer evolution is contin-
gent upon the knowledge of the value of these cross-term transport coefficients. This
conclusion has special consequences if direct numerical simulations of supercritical
mixing layers are intended to be used as databases for the development of predictive
turbulence models.
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Appendix A
The mixing rules recommended by Harstad et al. (1997) are

Aαβ = 0.457236(Ru Tc,αβ)2[1 + Cαβ(1−
√
T/Tc,αβ)]

2/pc,αβ,

Bα = 0.077796 RuTc,αα/pc,αα,

Cαβ = 0.37464 + 1.54226Ωαβ − 0.26992Ω2
αβ,

where the subscript c refers to critical properties (i.e. T/Tc is the reduced temperature).
The diagonal elements of the ‘critical’ matrices are equal to their pure substance
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counterparts, i.e. Tc,αα = Tc,α, pc,αα = pc,α, and Ωαα = Ωα where Ω is the species acentric
factor and the pure substance critical properties for heptane and nitrogen are given
in table 1. The off-diagonal elements are evaluated through additional rules

Tc,αβ =
√
Tc,ααTc,ββ(1− kαβ), pc,αβ = Zc,αβ(RuTc,αβ/vc,αβ),

vc,αβ = 1
8
[(vc,αα)

1/3 + (vc,ββ)1/3]3, Zc,αβ = 1
2
(Zc,αα + Zc,ββ), Ωαβ = 1

2
(Ωαα + Ωββ),

where the diagonal elements of each of the above symmetric matrices are also equal
to the pure substance values and kαβ is the binary interaction parameter which is a
function of the species being considered and is taken to be kαβ = 0.1 for α 6= β and
zero otherwise for heptane–nitrogen.

Appendix B
Miscellaneous thermodynamic relations are

∂Am

∂Xα

= 2
∑
β

AαβXβ,

∂Am

∂T
= − 1

T

∑
α

∑
β

XαXβAαβGαβ,

∂2Am

∂Xα∂T
=
−2

T

∑
β

AαβGαβXβ,

∂2Am

∂T 2
=

0.457236R2
u

2T

∑
α

∑
β

XαXβCαβ(1 + Cαβ)
Tc,αβ

pc,αβ

√
Tc,αβ

T
,

where

Gαβ =
Cαβ
√
T/Tc,αβ

1 + Cαβ(1−√T/Tc,αβ) .
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